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ABSTRACT: Accurate and reliable determination of the linear viscoelastic relaxation
spectrum is a critical step in the application of any constitutive equation. The experi-
mental data used to determine the relaxation spectrum always include noise and are
over a limited time or frequency range, both of which can affect the determination of
the spectrum. Regularization with quadratic programming has been used to derive the
spectrum; however, because both the experimental data and the spectrum change by
more than an order of magnitude, the input data and the spectrum are normalized in
order for the numerical procedure to be accurate. Accurate determination of the relax-
ation spectrum requires that the spectrum extend about two logarithmic decades on
either side of the frequency range of the input data. The spectrum calculated from G 9
alone is more accurate at shorter relaxation times, while that from G * data alone is
more accurate at longer relaxation times. Therefore, for best results, the spectrum is
obtained from a combination of G * and G 9 data, blended in the manner described herein.
Comparison with existing methods in the literature shows a consistently improved
performance of the present method illustrated with both model as well as experimental
data. q 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2177–2189, 1997
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INTRODUCTION actual experimental data. The topic of computing
the relaxation spectrum from experimental data
has attracted a lot of attention recently.2–9 Re-Determination of the relaxation spectrum is an

important step in the application of any linear or cently Orbey and Dealy10 have compared three
methods (namely, linear regression,2 with andnonlinear viscoelastic constitutive equation. The

relaxation spectrum can, in principle, be deter- without regularization,5 and nonlinear regres-
sion3) to determine the discrete relaxation spec-mined from any of a number of experimentally
trum. They found that with the regularizationmeasurable linear viscoelastic material proper-
method the back-calculated dynamic moduli areties; all other linear viscoelastic properties can
in better agreement with the experimental datathen be determined from the spectrum.1 However,
than with the other two methods. The objectivethere are several significant difficulties when this
of this article is to show that the most accurateseemingly straightforward procedure is applied to
relaxation spectrum is obtained by scaling of the
spectrum in the regularization scheme, by ex-Correspondence to: R. Shroff.
tending the spectrum about two logarithmic de-Contract grant sponsor: Millennium Petrochemicals, Inc.

q 1997 John Wiley & Sons, Inc. CCC 0021-8995/97/112177-13 cades on either side of the frequency range of the
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2178 RAMKUMAR ET AL.

input data, and by using a blended function of G * function matrix in eq. (2a) is inherently ill-condi-
tioned; consequently, small errors in the inputand G 9 data to minimize the error in regenerating

the original experimental data. These objectives data will produce large errors in the solution spec-
tra. These oscillations may be suppressed by largeare further elaborated below.

The linear viscoelastic material properties spacings between the relaxation times; however,
the spectra will then lose their resolution.5[e.g., the shear modulus, G (t ) ; the dynamic shear

moduli, G * (v ) ; and G 9 (v ) , the dynamic viscosity Regularization with quadratic programming
(RQP) has been employed to minimize the oscilla-h* (v ) and h9 (v ) , etc.] are related to the relaxation

spectrum H (l ) by a Fredholm integral of the first tions in the solution of ill-posed Fredholm integral
equations.11,12 Briefly, regularization imposes akind,1 where the kernel function depends upon

the linear viscoelastic material property of inter- smoothness constraint on the objective function,
where one minimizes the linear combination ofest. For example, for shear modulus G (t ) and dy-

namic moduli G * (v ) and G 9 (v ) , the relations are (1) the regularization function that measures
smoothness of the solution, and (2) the least-
squares error between the predicted and mea-

G (t ) Å *
`

0`

H (l )exp(0t /l ) d log l (1a) sured input function. Lee and colleagues,13 Hon-
erkamp,14 and Honerkamp and Weese5 have ap-
plied the regularization method for determiningG * (v ) Å *

`

0`

H (l )
v2l2

1 / v2l2 d log l (1b)
the linear viscoelastic relaxation spectra. Honer-
kamp showed how ambiguities arise because of

G 9 (v ) Å *
`

0`

H (l )
vl

1 / v2l2 d log l (1c) the experimental noise and incompleteness of the
data.14 A partial remedy to avoid these ambigu-
ities was to take into account asymptotic quanti-

Also, the kernel functions for the zero shear rate ties such as the zero shear viscosity and plateau
viscosity h0 , the stress decay coefficient h0 , and modulus as shown recently by Mead.9 However, it
the stress growth coefficient h/ are given respec- is often impossible to determine these quantities
tively by l, l exp(0t /l ) and l[1 0 exp(0t /l ) ] . experimentally. One objective of this article is to

The discrete form of the relaxation spectra can, use the RQP method for incomplete data but with-
in principle, be calculated from any of these exper- out requiring experimental determination of such
imental functions by discretizing the appropriate asymptotic quantities.
Fredholm integral. Specifically, the discretized Another concern with the straightforward ap-
form of eq. (1) is given by plication of the RQP method without the use of

scaling is that both the input data and the spectra
G (ti ) Å ∑

all j

exp(0ti /lj)Gj (2a) can change by orders of magnitude; consequently,
very small local errors when the input data and/
or the spectra are large can be much more signifi-

where the discrete spectrum Gj is determined cant to the total error than large relative errors
from the continuous spectrum H (l ) by when the input data and/or spectra are small.

Therefore, a second objective is to show how the
RQP method should be modified by applying suit-Gj Å *

logl j/1/2D

loglj01/2D
H (l ) d log l (2b)

able scaling to the solution spectra.
The third objective of this article is to examine

the adverse effect of choosing the spectral widthand D is the spacing between discretized spec-
trum on the log l axis. Similar results can be to be the inverse of the experimental frequency

range as is commonly employed in the literature.developed for G * (v ) , G 9 (v ) , etc., by using the
appropriate kernel functions described above. The Finally, although the spectrum can be determined

in principle for any experimentally measurableGj spectra in eq. (2a) can be solved in principle
via the traditional least-squares method, where linear viscoelastic property, different properties

will be more sensitive to different regions of thethe Gjs are chosen so that the error between the
experimentally measured and the predicted val- spectra. For example, the kernel function of h0 (t )

( i.e., le0t /l) will emphasize the long relaxation-ues of G (ti ) is minimized. However, the least-
squares method produces spectra with consider- time part of the spectrum as compared with the

kernel function of G (t ) ( i.e., e0t /l) . In this spirit,able oscillations, even though G (ti ) is well de-
scribed. This problem occurs because the kernel we will show how to modify the minimization cri-
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LINEAR VISCOELASTIC RELAXATION SPECTRUM 2179

terion to employ the G * data at low frequencies
N[ f ( y ) ; c(x ) ] Å *

b

a
Fccal (x ) 0 cin (x )

cin (x ) G2

dxand the G 9 data at high frequencies. Experimen-
tal difficulties in obtaining reliable transient data
at both short and long times precludes accurate
determination of the spectrum from transient

Å *
b

a

*
b

a
A (x , y ) f ( y ) dy 0 cin (x )

cin (x )
2 dx (5)data alone. Hence, the present work focuses on

determining the spectrum from experimental dy-
namic data (frequency response).

and the regularization function Vn is given byThe rest of this article is organized as follows:
First, a brief description of the RQP method is
presented in the Regularization with Quadratic
Programming Method section. The Numerical Vn[ f ( y ) ] Å an *

b

a
F dn f ( y )

dyn G2

dy (6)
Simulations section presents a critical analysis of
the RQP method using model ‘‘data,’’ where the
input data is of finite extent and contains experi- where an is the regularization parameter. The
mental noise. In this section we develop the neces- regularization function penalizes rapid changes
sary modifications to the straightforward RQP in the function f ( y ) , since the derivative will be
method in order to determine the relaxation spec- large if f ( y ) fluctuates rapidly. The regularization
tra. In the Relaxation Spectra for IUPAC A sec- parameter an determines the relative importance
tion, the improved RQP methods are applied to given to minimizing the error between the calcu-
the standard IUPAC A polyethylene. Finally, in lated and input C(x ) data relative to obtaining a
the Discussion section, the significance of these smooth function f ( y ) . Operationally, an is in-
results is examined. A comparison of the present creased systematically until the least-squares er-
method with others in the literature for comput- ror determined by N[ f ( y ) ; C(x ) ] is of the same
ing relaxation spectra appears in the Appendix. order as the error inherent in the experimental

data.
Equation (4) can be solved using standard qua-

REGULARIZATION WITH QUADRATIC dratic programming methods,15 where the deriva-
PROGRAMMING METHOD tives in eq. (6) are approximated by simple finite

differences and the integrals in eqs. (5) and (6)
This section briefly reviews the basic RQP method are approximated by the appropriate discrete
in order to provide a basis for the subsequent mod- summations. We will solve eq. (4) using the com-
ifications. RQP is a method for solving the ill- plementary pivot method developed by Lemke16

posed integral equation via the algorithm of Ravindran and Lee.17

c(x ) Å *
b

a
A (x , y ) f ( y ) dy (3)

NUMERICAL SIMULATIONS

where A (x , y ) is the kernel function of the integral Model Spectrum and Data
equation, c(x ) is the experimentally measured
property, and f ( y ) is the function to be deter- In order to evaluate the effectiveness of the RQP
mined (i.e., the relaxation spectrum). The ill-pos- method we need to construct a model spectrum
edness of eq. (3) exists for the kernel functions that is completely known but is similar in form to
such as those in eqs. (1a) – (1c) because multiple a real viscoelastic material. The model spectrum
solutions exist.11,12 In the RQP method the func- used in this communication, shown in Figure 1,
tional was determined from G 9 data for LR723 (Quan-

tum Chemical Co., Cincinnati, OH), which is a
Mn[ f ( y ) ; c(x ) ] high-density polyethylene (HDPE) with a density

of 0.952 g/cm3 and a nominal high-load melt indexÅ N[ f ( y ) ; c(x ) ] / Vn[ f ( y ) ] (4) (21,600 g load and 1907C) of 9.5. The G * and G 9
data were determined using a Rheometrics RDA2

is minimized, where the least-squares error be- at 1907C. The relaxation spectra over a very lim-
ited log li range were determined from the G 9tween the input data Cin (x ) and the recalculation

of the input data Ccalc (x ) using eq. (3) is given by data using the second order approximate method
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:

G * (vi )
:

G 9 (vi )
:

Å
???

v2
i t

2
j

1 / v2
i t

2
j

???

???
vitj

1 / v2
i t

2
j

???

:

Gj

:

(7)

where the second derivative regularization func-
tion is employed. In Figure 2(a) the assumed
width of spectra was from 1003 to 10/2 s, which
is consistent with the G * (v ) and G 9 (v ) data
range from 1002 to 10/3 s01 , and in Figure 2(b)
the assumed spectral width was 1005 to 10/5 s.
Examination of the spectra determined without

Figure 1 Model relaxation spectrum generated by ex-
trapolating the spectrum from G 9 data of LR723.

of Schwarzl and Staverman.18 The model spectra
were constructed by extrapolating the spectra de-
termined from the G 9 data to both longer and
shorter relaxation times. There are five spectral
points per logarithmic decade and the spectra
were set to zero at lis less than 1005 and greater
than 105 seconds. The same spectral spacing was
used throughout this work.

G * (v ) and G 9 (v ) model ‘‘data’’ have been gen-
erated from the model spectra. Experimental er-
ror has been simulated by G * Å G *exact [1 / E ] ,
where G *exact was determined from the model spec-
tra and E is a gaussian distributed random vari-
able with a standard deviation of 1%. Note that
the experimental error is on a relative rather than
an absolute basis, which is experimentally most
reasonable. The dynamic viscoelastic data were
generated for frequencies between 1002 to 10/3

s01 with 5 points/decade, which is nearly the
largest frequency range that can be achieved for
polymer melts even using time–temperature su-
perposition. G (t ) , h0 (t ) , and h/(t ) were gener-
ated using similar methods. We now have a set
of truncated and noisy model data from which the
relaxation spectrum can be determined by the
RQP method.

Figure 2 Effect of scaling and spectral width on the
Scaling the Spectra relaxation spectrum computed using the RQP method.

Spectra: between (a) 1003 and 10/2 s, and (b) 1005 and
The relaxation spectra have been determined by 10/5 s. Open circles indicate model spectra, solid lines
using the G * and G 9 data simultaneously. Spe- indicate scaling of the spectral strength, and dashed
cifically, the least-squares error [i.e., N in eq. (4)] lines indicate the absence of scaling. Values of regular-
is given by ization parameter a are indicated on figure.
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LINEAR VISCOELASTIC RELAXATION SPECTRUM 2181

scaling revealed significant differences between unduly emphasize the large Gis. The real spectra
can be recovered after application of the RQPthe spectra determined via the RQP method and

the input model spectra. For the narrow log l win- method by multiplication by the known Gi ,scale.
Any of the simple approximations for determin-dow, the spectra are only accurately recalculated

for less than one logarithmic decade. For the ing the spectrum from G * and G 9 data can be
employed for determining Gi ,scale . We have usedwider log l window the calculated spectra are bet-

ter but still do not accurately predict the model the second approximation to the spectra from
G 9 (v ) due to Schwarzl and Staverman18:spectra, especially at longer lis. Since relaxation

times that are just outside the experimentally
measured log v range can still contribute, it is

H (t ) Å 2
p FG 9 0 d2G 9

d ( ln v )2G
1/vÅt

(10)arbitrary to truncate the spectra prematurely at
the experimental log v window. This is because
the contributions for relaxation times that are two

and the approximation for G * (v ) data bydecades outside the range of the experimental fre-
Tschoegl19 :quency window are quite significant, as discussed

below under the Spectral Width heading.
Examining the predictions without scaling in H (t ) Å G *F d log G *

d log v
0 1

2 S d log G *

d log v D2

Figure 2(b), we observed that increasing the reg-
ularization parameter improves the predictions at
shorter relaxation times at the expense of the fit

0 1
4.606

d2 log G *

d ( log v )2G
1/vÅt /

√
2

(11)at longer relaxation times. This occurs because
the regularization term in eq. (6) is linear in Gi ;
thus, fluctuations in the spectra at large Gis (i.e.,

The scaled values for the spectrum beyond theshort times) are several orders of magnitude more
range corresponding to the inverse of the data’simportant than fluctuations when the Gis are
frequency window have been obtained via a poly-small (i.e., long times). It would be more realistic
nomial extrapolation of the dynamic moduli. Theif the regularization could be performed with re-
Gi ,scale at short times has been determined via anspect to log Gi instead of Gi , since it is fluctuations
extrapolation of the G 9 (v ) data and the Gi ,scale aton a log Gi versus log li plot that are most rele-
long time has been determined via an extrapola-vant. However, it is not possible to implement a
tion of the G * (v ) .nonlinear logarithmic term in the quadratic pro-

Reexamining Figure 2(b), the computed spec-gramming algorithm. It could be for the same rea-
tra are now smooth at both short and long relax-sons that Honerkamp and Weese6 proposed a non-
ation times. The values of a are typically higherlinear regularization method to circumvent the
with the scaled problem because the magnitudeproblems associated with their linear regulariza-
of the curvature is reduced in comparison withtion method. As an alternative, we propose scaling
the least-squares part of the objective function inthe Gi in order to normalize the computed spectral
eq. (4).values to approximately unity. Specifically, each

element in the {Gi } vector in eq. (7) will be divided
by Gi ,scale and the appropriate elements in the ker- Input Data Set
nel matrix in eq. (7) will be multiplied by Gi ,scale .
Specifically, In the studies described above, the G * (v ) and

G 9 (v ) data were used simultaneously to deter-
mine the Gi spectra. It should be possible, in prin-c(x )calc

c(x )in
Å 1

c(x )in
∑ Gi ,scaleA (x , yi )

Gi

Gi ,scale
(8) ciple, to employ any of the viscoelastic material

functions to determine the relaxation spectra. The
effect of employing different input data is shownand the regularization term is given by
in Figure 3, where the spectral width in the RQP
method was assumed to be between 1005 and 10/5

Vn[ f ( y ) ] Å aSF d2Gi /Gi ,scale

d ( log li )2 G2

(9) s. The relaxation spectra determined from the
G 9 (v ) data alone show excellent agreement at
short times but significant deviations at long re-
laxation times. In contrast, the relaxation spectraThus the basic structure of eq. (7) is unaltered;

however, the regularization function will now not determined from the G * (v ) data show excellent
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2182 RAMKUMAR ET AL.

Figure 3 Effects of different input data for determining the relaxation spectra via
the RQP method. Open circles indicate model spectra. Relaxation spectra calculated
with: G * data, dotted line; G 9 data, dot-dashed line; G * and G 9 data, long dashed line;
and fG * and (1 0 f )G 9, solid line.

agreement at long times but are significantly v01 contribute little if any to G * (v ) . Thus
the storage modulus G * (v ) is dominatedlower than the actual spectra at short relaxation

times. And when the sets of G * (v ) and G 9 (v ) data by the spectral contributions at long relax-
are employed simultaneously [as defined in eq. ation times (i.e., l ú v01) .
(7)] , discrepancies are observed at both long and 2. At all frequencies the G 9 kernel function is
short relaxation times. approximately bell-shaped around l Å v01.

The above observation relates to a fundamental Thus the loss modulus G 9 (v ) is dominated
point of this article. In Figure 4 the kernel func- by contribution from relaxation times
tions of G * and G 9 are shown as functions of the around v01 , and spectral contributions
relaxation time l. Referring to this figure, the fol- from relaxation times much longer than
lowing observations can be made: v01 will have a negligible effect on G 9 (v ) .

The kernel function also decays rapidly for
relaxation times much shorter than v01 ;1. At all frequencies the G * kernel function
however, this decay is mediated becauseis nearly a step function at l Å v01 and

consequently relaxation times shorter than the magnitude of the relaxation spectra is
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LINEAR VISCOELASTIC RELAXATION SPECTRUM 2183

fi Å 1YF1 / expHc lnSvi

vf
DJ G (12b)

and c is a constant. The blending function changes
from emphasizing G * (v ) data to G 9 (v ) data at a
characteristic frequency vf , which should be se-
lected to be near the center of the spectrum. For
this study vf Å 1. The spectrum obtained using
the blending function is also shown in Figure 3.
The agreement of the computed spectrum with
the model spectrum is now excellent at both short
and long relaxation times. The effect of the con-
stant c in the blending function on the computed
spectra is shown in Figure 5. If c is greater than

Figure 4 G * and G 9 kernel functions. or equal to 1, excellent agreement is observed be-
tween the predicted and model spectrum. We will

generally larger at shorter relaxation use c Å 5 throughout the remainder of this work.
times (at least in the terminal relaxation
region relevant for polymer melts) . There-

Spectral Widthfore, G 9 (v ) will be dominated by spectral
contributions at short relaxation times As shown in Figure 2(a), if the spectrum is com-
(i.e., l õ v01) . puted over a range of relaxation times correspond-

ing to the inverse of the frequency window there
Consequently, the relaxation spectrum at short will be significant errors in the prediction of the
relaxation times is most sensitive to high-fre- spectrum. Examining the form of the G * (v ) and
quency G 9 (v ) data and the relaxation spectrum G 9 (v ) kernel functions, contributions from relax-
at long relaxation times is most sensitive to low- ation times that are two logarithmic decades out-
frequency G * (v ) . Determining the relaxation side the range of the experimental frequency win-
spectrum from G 9 (v ) data alone is expected to be dow can be significant. The effect of the assumed
accurate at short relaxation times, while using spectral width on the relaxation spectra deter-
G * (v ) alone should provide an accurate determi- mined by RQP is shown in Figure 6. If the spectral
nation of long relaxation time parts of the spec- width is not extended beyond the range of the
trum. This conclusion is born out by the calculated experimental data, significant errors occur. A
spectra in Figure 3. slight discrepancy is observed when the assumed

The above observations not only explain why
the determination of the spectrum from G * (v )
data is different from the spectrum determined
using G 9 (v ) data, but also provide the natural
remedy. The spectrum should be computed from
a combination of G * (v ) and G 9 (v ) data blended
in an appropriate manner, taking advantage of
the G * (v ) sensitivity to longer relaxation times
and the sensitivity of G 9 (v ) to shorter relaxation
times. We thus propose the following objective
function to be minimized:

MÅ∑ fiFG *cal

G *in
0 1G2

/∑ (10 fi )FG 9cal

G 9in
0 1G2

/ a ∑ F d2(Gi /Gi ,scale )
d ( log li )2 G (12a)

Figure 5 Effect of the constant c in the blending func-
tion on the computed relaxation spectra.where the blending function fi is given by
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2184 RAMKUMAR ET AL.

Figure 7 Effect of spectral width on the stress relax-Figure 6 Effect of spectral width on the computed
ation function h0 (t ) . Open circles indicate responserelaxation spectra. Spectral widths of {2 and {3 loga-
computed from the model spectra. The assumed rangerithmic decades greater are the solid line that lies upon
of log li is indicated in the figure.the model spectra indicated by the open circles.

spectral width is extended only one logarithmic an integral over all relaxation times, and thus
decade beyond the experimental frequency range. truncation errors severely affect the prediction of
However, when the log l window is extended two h0 . Thus the modified RQP method does accu-
or more logarithmic decades on either side of the rately extend the spectra outside the experimen-
experimental log v window, the computed spectra tal log v range; however, abrupt truncation of the
are identical to the actual spectrum. spectra well outside the experimental log v win-

dow cannot be determined reliably. The abrupt
truncation of the spectra is primarily an artifactPrediction of Other Linear Viscoelastic
of this model viscoelastic material because it isMaterial Functions
highly unlikely that the viscoelastic processes in

The spectra recomputed via the modified RQP any real material would exhibit an abrupt cutoff.
method accurately describe the G * (v ) and G 9 (v ) ; If reliable transient data are available, they
this is hardly surprising, however, since the Mn

function in eq. (4) is designed to minimize the
error between the input and recomputed G * (v )
and G 9 (v ) data. A more critical test is to compute
the spectra from one set of linear viscoelastic data
and recompute a different viscoelastic response.
Using the RQP method with G * (v ) and G 9 (v )
input data, the G (t ) response was computed and
the predicted response was identical to the G (t )
response determined using the model spectra. The
predicted responses for the stress decay coefficient
h0 (t ) and stress growth function h/ (t ) are shown
respectively in Figures 7 and 8. These transient
responses are very sensitive to the assumed spec-
tral width that was used in the RQP procedure,
even though the input and recalculated G * (v ) and
G 9 (v ) agreed over the log v range of the input
data for all the assumed spectral widths. The dis- Figure 8 Effect of spectral width on the stress relax-
crepancies at short times in the predicted h0 (t ) ation function h/ (t ) . Open circles indicate response
response occur because of errors in determining computed from the model spectra. The assumed range

of log li is indicated in the figure.the zero shear rate viscosity h0 . Specifically, h0 is
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LINEAR VISCOELASTIC RELAXATION SPECTRUM 2185

G * error Å F 1
m 0 1

∑
m

(G *in 0 G *calc ) 2G1/2

(13)

where m is the number of data points. The G 9
error is computed in a similar manner. At low
values of a the G * and G 9 errors are relatively
insensitive to the regularization parameter; how-
ever, when a exceeded 107 the error in both G *
and G 9 increased dramatically because curvature
in the relaxation spectra was over-penalized by
the regularization term. For log a less than 0 the
relative error in both G * and G 9 was approxi-
mately 1%, which was the magnitude of the ran-
dom noise added to the model data. This is reason-
able because the calculated solution should not fit
the input data better than the inherent noise in
the data. Examining Figure 9(b), at log a of 06,
the calculated spectrum is oscillatory; however for
log a of 04 and larger, smooth spectra are ob-
tained. Thus a log a of 02 or 01 is optimum be-
cause it will provide the smoothest spectrum
while ensuring consistency with the error in the
back-calculated G * and G 9 responses.

Comparison with Other Methods

A comparison of the present method with other
methods in the literature for computing relax-
ation spectra appears in the Appendix. The com-
parison is performed using both model spectraFigure 9 Effect of the regularization parameter on

the G * (v ) and G 9 (v ) error (a) and the relaxation spec- and experimental data from the literature. The
trum (b). excellent performance of the method of the pres-

ent work is illustrated in Figures A.1 and A.2,
and demonstrated quantitatively in Table A.I.

can be used effectively to assess the necessary
spectral width. Alternatively, the transient data RELAXATION SPECTRA FOR IUPAC A
could be employed as input data along with the
dynamic data. The major drawback to this scheme In this section the regularization procedures de-
is that instrument artifacts often plague h0 (t ) veloped in the previous section are applied to IU-
and h/ (t ) data. The present method is not limited PAC A polyethylene. The spectra were obtained
to the oscillatory data; one just needs to include using G * (v ) and G 9 (v ) data of Zosel20 which were
the right kernels in eq. (7). available from a log v of 02 to /2. The relaxation

spectra were computed for log li between 04 and
/4, which is a two-decade extrapolation on eitherRegularization Parameter
side of the data’s frequency range. The blending
function [eq. (12b)] with c Å 5 was used and theThe final RQP-method variable that must be as-

sessed is the regularization parameter a. The ef- optimum log a was determined to be 01. The re-
laxation spectrum is tabulated in Table I andfects of a on the error in G *, G 9, and Gi spectra

are shown in Figure 9, where the blending func- shown graphically in Figure 10.
The relaxation spectrum previously deter-tion was employed and the log l range was 05

to /5. The G * error reported in Figure 9(a) was mined by Laun2 using the traditional least-
squares approach is also shown in Figure 10. Thecomputed as follows:
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2186 RAMKUMAR ET AL.

Table I Relaxation Spectrum of IUPAC A
Determined Using the Present Method

log li (s) log Gi (Pa)

04.0 4.796
03.8 4.723
03.6 4.651
03.4 4.581
03.2 4.512
03.0 4.443
02.8 4.375
02.6 4.307
02.4 4.239
02.2 4.170
02.0 4.099
01.8 4.027

Figure 10 Relaxation spectrum for IUPAC A. Open01.6 3.952
circles indicate spectral strengths given in Table I.01.4 3.875
Pluses are spectral values of Laun.201.2 3.795

01.0 3.714
00.8 3.633

ferences. The differences in the two spectra are00.6 3.552
shown in Figure 11 for the prediction of the nor-00.4 3.472
malized stress growth function h/ (t ) /h0 , where00.2 3.389

0.0 3.287 h0 is the zero-shear-rate viscosity. The spectrum
0.2 3.170 determined via the modified RQP method seems
0.4 3.053 to provide a somewhat better fit to the experimen-
0.6 2.923 tal h/ (t ) data, probably because the RQP method
0.8 2.777 does a better job of determining the spectra at
1.0 2.614 relaxation times just longer than the experimen-
1.2 2.433

tal frequency window.1.4 2.235
1.6 2.021 DISCUSSION1.8 1.789
2.0 1.540 In order to determine the relaxation spectrum ac-
2.2 1.271 curately from dynamic linear viscoelastic data,
2.4 0.982
2.6 0.672
2.8 0.339
3.0 00.017
3.2 00.398
3.4 00.806
3.6 01.241
3.8 01.705
4.0 02.199

spectrum determined by Laun is shifted vertically
from the spectrum determined via the modified
RQP method. This is a consequence of the wider
spectral spacings employed by Laun to prevent
unrealistic oscillations that can occur in an uncon-
strained least-squares procedure. There is some
difference in shape at both short and long relax- Figure 11 Stress growth function for IUPAC A. Solid
ation times, some of which is due to changes in points indicate experimental data. Solid line is com-
the spectral spacing in Laun’s spectrum at long puted from the spectrum given in Table I; dashed line

is computed from the spectrum of Laun.2relaxation times, but there are also some real dif-
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the RQP procedure should be modified. Specifi-
cally, the assumed spectral width must be at least
two logarithmic decades wider than the experi-
mental data, the spectral strengths in the regular-
ization term [i.e., eq. (9)] must be scaled appro-
priately, and the least-squares error should em-
phasize the G * (v ) data at low frequencies and the
G 9 (v ) data at high frequencies. Although these
modifications are not revolutionary, they are nev-
ertheless essential in order to determine the re-
laxation spectrum accurately.

It is interesting to note that the spectrum can
be determined at relaxation times outside the
range of the experimental data. In fact, the modi-
fied RQP method is stable for as large a spectral
width as one wants to employ; however, the sig- Figure 12 Relaxation spectra for two polyethylene
nificance of the spectrum well outside the data materials. Open circles indicate unmodified material

and triangles indicate a shear-modified material.range must be considered carefully. Specifically,
spectral contributions that lie within the range of
the input data obviously contribute to G *calc and
G 9calc in the minimization function given by eq.
(12a); and spectral contributions that are outside
the data range but close to the input data (e.g., resin in pellet form. The optical properties were

measured on 1.5-mil blown film produced from the{1.5 logarithmic decades outside the log v range)
two resins. LDPE-A had a haze level of 33 whilewill still effect G *calc and G 9calc , although to a lesser
LDPE-B had a haze level of 24 (i.e., LDPE-Bextent. Spectral contributions well outside the
shows a 27% improvement over LDPE-A). Therange of the experimental data (e.g., more than
improvement in optical properties is in accordtwo logarithmic decades outside the frequency
with past studies which show that optical proper-window) will not contribute to the least-squares-
ties improve with reduction in LDPE melt elastic-error part of the minimization function; however,
ity.21,22 It is also known that shear modification ofchanges in the spectra well outside the data range
LDPE reduces melt elasticity.23 The shear modi-will contribute to the regularization part of the
fication is also suspected to be responsible for theminimization function. Since the second deriva-
different behaviors of LDPE resins IUPAC A, B,tive of the spectra is used in the minimization
and C.function, changes in the slope of the spectra at

Returning to Figure 12 it can be observed thatvery short and very long relaxation times will be
LDPE-A has a broader relaxation spectrum atpenalized. Thus the modified RQP method will
long times and therefore has a higher melt elastic-essentially effect a smooth extrapolation of the
ity, which explain its poorer optical properties.spectra for relaxation times well outside the fre-
However, the difference in the two spectra be-quency range of the experimental data.
comes apparent only at relaxation times greaterThis article’s emphasis on the accurate deter-
than 102 s, which are outside the experimental

mination of the relaxation spectrum raises the frequency window of log v Å 01.6 to 2.6 rad/s.
obvious question of whether the differences be- Thus the ability to infer differences in the spectra
tween the various methods are significant. We ad- is made possible only by using a method that is
dress this question with the following example: sensitive enough to accurately and reliably re-
Figure 12 shows the relaxation spectra deter- solve the differences between LDPE-A and LDPE-
mined from dynamic data at 1507C for two low- B at relaxation times that are outside the range
density polyethylene (LDPE) resins, where differ- of the experimental data.
ences in the relaxation spectra are observed at
long relaxation times. LDPE-B is a shear modified
version of LDPE-A that occurs after a single pass One of the authors (D.H.S.R.) was supported by a gen-
through an extruder. LDPE-A is a 0.46 Melt In- erous research grant from the Millennium Petrochemi-

cals, Inc., Cincinnati, Ohio.dex, 0.9334 density, 7.9% vinyl acetate, LDPE
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Table A.I Average Absolute Deviation (AAD) for Dynamic Moduli
Back-Calculated with Discrete Spectra Obtained by Different Methods10

Sample Method AAD in G* AAD in G9

Model data of Honerkamp Present work 0.028 0.045
and Weese5

Honerkamp and Weese5 3.00 4.10
Baumgaertel and Winter3 5.12 5.35
Laun2 6.98 10.16

Polybutadiene Present work 0.018 0.011
Honerkamp and Weese5 0.76 0.94
Baumgaertel and Winter3 1.18 1.26
Laun2 16.6 13.7

HDPE Present work 0.041 0.020
Honerkamp and Weese5 0.85 1.26
Baumgaertel and Winter3 1.33 1.12
Laun2 4.82 2.73

AAD Å 1
M

(V
M

iÅ1
ÉSG*

exp 0 G*
calD/G*

expÉ.

APPENDIX: COMPARISON OF RELAXATION ure also contains the spectra calculated by Orbey
and Dealy10 with the methods of (1) HonerkampSPECTRA CALCULATED WITH DIFFERENT

METHODS and Weese,5 (2) Baumgaertel and Winter,3 and
(3) Laun.2 The spectral points of the other methods
were read out from Figure 1 of Orbey and Dealy.10Different Model Spectra
The parameter h0 in Figure A.1 is defined asModel Spectrum of Honerkamp and Weese5

The spectrum is a bimodal distribution; the data h0 Å ln(lb /la ) / (N 0 1) (A.1)
range is log v: 03 to 3 with 4% random error.
The relaxation spectrum was calculated with the In eq. (A.1), N is the total number of spectral
present RQP method using the following parame- points, and la and lb refer to the lower and upper
ters: log l: 05 to 4; log a: 03, 5 points/decade, c bounds, respectively, of the relaxation time range.
(the parameter in the blending function) Å 5. The absolute average deviations (AAD) in G *,G 9

Figure A.1 compares results of the present from different methods are given in Table A.I. The
work with the original model spectrum. This fig- spectrum computed with the present method cap-

Figure A.2 Model relaxation spectrum of Emri andFigure A.1 Model relaxation spectrum of Honerkamp
and Weese.5 Tschoegl.7
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2. H. M. Laun, J. Rheol., 30, 459 (1986).tures all the important features of the original
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511 (1989).dicts the end regions very well compared with the
4. V. M. Kamath and M. R. Mackley, J. Non-Newt.other methods shown. The AADs in G 9,G * are also

Fluid Mech., 32, 119 (1989).lower with the present method.
5. J. Honerkamp and J. Weese, Macromolecules, 22,

4372 (1989).Model Spectrum of Emri and Tschoegl7,8

6. J. Honerkamp and J. Weese, Rheol. Acta, 32, 65
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Posed Problems, Springer, New York, 1984.
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